The Autonomist 3
traffic jam on a Sao Paulo freeway

$1m prize for ‘blockchain car’ ideas in smart cities

A US$1 million (€890,000, £780,000) prize is up for grabs for ideas which allow blockchain-connected vehicles to improve the urban environment in smart cities.

Based on the famous Darpa Grand Challenges of the 2000s which drove the rapid development of autonomous vehicles, the Citopia initiative is the second phase of a competition organised by the Mobility Open Blockchain Initiative dubbed the MOBI Grand Challenge.
The Mobility Open Blockchain Initiative is a consortium which includes major automakers GM, Ford, BMW, Renault and Honda as well as The World Economic Forum, The Ministry of Transport for the Republic of China, Denso, IBM and Accenture.
MOBI’s Grand Challenge invites developers around the world to use blockchain technology for smart city applications to improve urban environments. Citopia, launched today, is focusing on financial incentives to improve driver behaviour and make our cities greener, smarter, safer, and improve our quality of life.
The ultimate goal of the MGC is to create the first viable network of blockchain-connected vehicles that can use smart infrastructure in cities to share data, make and receive payments and coordinate behaviour.

Phase One of the challenge began last October 12, 2018 in New Mexico, USA. The first and second prize-winners, Chorus Mobility and Oaken Innovations respectively, showed off entries highlighting coordinated vehicle behaviour and usage-based payment for infrastructure.
This year’s phase focuses on the ability of the blockchain – a distributed digital ledger where transactions between parties are recorded – to enable road and congestion pricing, carbon footprint management, parking fee collection, data exchange and micro-payments.
‘Innovators made incredible strides in the first phase of the MGC,’ MOBI’s chief creative officer Tram Vo told The Autonomist. He predicted that the competition would drive ‘positive behavioural change in urban ecosystems’.
For more information or to register for the MGC Phase II - Citopia, visit

two model autonomous cars on a black and white racing track

Driverless cars ‘can improve overall traffic flow by 35%’

A study by researchers from the University of Cambridge shows that a fleet of driverless cars working together to keep traffic moving smoothly can improve overall traffic flow by at least 35 per cent.

The scientists programmed a small fleet of miniature robotic cars to drive on a multi-lane track and observed how the traffic flow changed when one of the cars stopped.

When the cars were not driving cooperatively, any cars behind the stopped car had to stop or slow down and wait for a gap in the traffic, as would typically happen on a real road. A queue quickly formed behind the stopped car and overall traffic flow was slowed.

However, when the cars were communicating with each other and driving cooperatively, as soon as one car stopped in the inner lane, it sent a signal to all the other cars. Cars in the outer lane that were in immediate proximity of the stopped car slowed down slightly so that cars in the inner lane were able to quickly pass the stopped car without having to stop or slow down significantly.

Additionally, when a human-controlled driver was put on the ‘road’ with the autonomous cars and moved around the track in an aggressive manner, the other cars were able to give way to avoid the aggressive driver, improving safety.

The results, to be presented today at the International Conference on Robotics and Automation (ICRA) in Montréal, will be useful for studying how autonomous cars can communicate with each other, and with cars controlled by human drivers, on real roads in the future.

‘Autonomous cars could fix a lot of different problems associated with driving in cities, but there needs to be a way for them to work together,’ co-author Michael He, an undergraduate student at St John’s College, who designed the algorithms for the experiment, told The Autonomist.

‘If different automotive manufacturers are all developing their own autonomous cars with their own software, those cars all need to communicate with each other effectively,’ said co-author Nicholas Hyldmar, an undergraduate student at Downing College, who designed much of the hardware for the experiment.

The two students completed the work as part of an undergraduate research project in summer 2018, in the lab of Dr Amanda Prorok from Cambridge’s Department of Computer Science and Technology.

Many existing tests for multiple autonomous driverless cars are done digitally, or with scale models that are either too large or too expensive to carry out indoor experiments with fleets of cars.

Starting with inexpensive scale models of commercially-available vehicles with realistic steering systems, the Cambridge researchers adapted the cars with motion capture sensors and a Raspberry Pi, so that the cars could communicate via wifi.

They then adapted a lane-changing algorithm for autonomous cars to work with a fleet of cars. The original algorithm decides when a car should change lanes, based on whether it is safe to do so and whether changing lanes would help the car move through traffic more quickly. The adapted algorithm allows for cars to be packed more closely when changing lanes and adds a safety constraint to prevent crashes when speeds are low. A second algorithm allowed the cars to detect a projected car in front of it and make space.

They then tested the fleet in ‘egocentric’ and ‘cooperative’ driving modes, using both normal and aggressive driving behaviours, and observed how the fleet reacted to a stopped car. In the normal mode, cooperative driving improved traffic flow by 35 per cent over egocentric driving, while for aggressive driving, the improvement was 45 per cent. The researchers then tested how the fleet reacted to a single car controlled by a human via a joystick.

‘Our design allows for a wide range of practical, low-cost experiments to be carried out on autonomous cars,’ said Prorok. ‘For autonomous cars to be safely used on real roads, we need to know how they will interact with each other to improve safety and traffic flow.’

In future work, the researchers plan to use the fleet to test multi-car systems in more complex scenarios including roads with more lanes, intersections and a wider range of vehicle types.

Nicholas Hyldmar, Yijun He, Amanda Prorok. ‘A Fleet of Miniature Cars for Experiments in Cooperative Driving.’ Paper presented at the International Conference on Robotics and Automation (ICRA 2019). Montréal, Canada.